Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 14(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37888173

RESUMO

This laboratory study aimed to evaluate the effect of different surface patterns using femtosecond laser treatment on the enclosed mold shear bond strength (EM-SBS) of resin composite to zirconia (ZrO2) surfaces and to contrast it with the widely used tribochemical silica coating (TBC) surface conditioning method. A set of fifteen rectangular ZrO2 blocks were randomly divided into five groups according to surface pretreatment: Control G0-no treatment; G1-TBC with silane application; G2-femtosecond laser irradiation with horizontal lines 30 µm apart; G3-femtosecond laser irradiation with horizontal lines 15 µm apart; and G4-femtosecond laser irradiation with cross lines 30 µm apart. The pretreated surfaces were characterized by a surface profilometer, tensiometer and scanning electron microscope. The EM-SBS of resin composite stubs to ZrO2 was measured followed by fractographic analysis. The surface roughness and water contact angle were observed to be statistically higher among the femtosecond laser groups compared to the TBC and control groups. The G4 group exhibited the highest EM-SBS among all the groups, irrespective of the ageing conditions used. At the end of 5000 thermocycles, G4 exhibited EM-SBS of 14.05 ± 4.21 MPa compared to 13.80 ± 3.01 MPa in G1 and 5.47 ± 0.97 MPa in G0. The two-way ANOVA revealed a significant effect of both study groups and ageing conditions on the EM-SBS (p < 0.001). Utilization of femtosecond laser technology holds promise as a potential and alternative mechanical retention approach for enhancing the bonding strength of the resin composite to ZrO2.

2.
Photodiagnosis Photodyn Ther ; 43: 103692, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37419191

RESUMO

AIM: This in-vitro investigation aimed to assess the antibacterial effectiveness of photo-sonodynamic treatment using methylene blue (MTB)-incorporated poly(D, L-Lactide-Co-Glycolide) acid (PLGA)-nanoparticles for the disinfection of root canals. METHODS: The synthesis of PLGA nanoparticles was achieved using a solvent displacement technique. The morphological and spectral characterization of the formulated PLGA nanoparticles were carried out using scanning electron microscopy (SEM) and Transformed-Fourier infrared spectroscopy (TFIR), respectively. One hundred human premolar teeth were sterilized and then their root canals were infected with Enterococcus faecalis (E. faecalis). Later, the bacterial viability evaluation of the following 5 research groups was conducted: (a) G-1: specimens treated with a diode laser; (b) G-2: specimens treated with antimicrobial photodynamic therapy (aPDT) and 50 µg/mL of MTB-incorporated PLGA nanoparticles; (c) G-3: specimens treated with ultrasound (US); (d) G-4: specimens treated with US and 50 µg/mL of MTB-incorporated PLGA nanoparticles; and (e) G-5: control group consisting of specimens that did not undergo any treatment. RESULTS: Under SEM, the nanoparticles exhibited a uniform spherical shape and were around 100 nm. The formulated nanoparticles' size was validated through zeta potential analysis utilizing dynamic light scattering (DLS). The TFIR images of both PLGA nanoparticles and MTB-incorporated PLGA nanoparticles exhibited absorption bands ranging from around 1000 to 1200/cm and nearly from 1500 to 1750/cm. The G-5 samples (control group) demonstrated the greatest viability against E. faecalis, followed by G-3 (US-conditions specimens), G-1 (diode laser-conditioned specimens), G-2 (aPDT + MTB-incorporated PLGA-nanoparticles-conditioned specimens), and G-5 (US + MTB-incorporated PLGA-nanoparticles-conditioned specimens). Significant statistical differences (p < 0.05) were observed among all research groups, including both the experimental groups and control group. CONCLUSION: The combination of US via MTB-incorporated PLGA nanoparticles exhibited the most effective eradication of E. faecalis, suggestive of a promising therapeutic modality against E. faecalis for disinfecting root canals with complex and challenging anatomy.


Assuntos
Anti-Infecciosos , Nanopartículas , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Azul de Metileno/farmacologia , Cavidade Pulpar , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Enterococcus faecalis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...